

DIE
 BatFornenlehre

 UMFASSEND:
DEN BACKSTEINBAU UND DEN WERKSTEINBAU FÜR MITTELALTERLICHE UND RENAISSANCE-FORMEN

FÜR DEN SCHULGEBRAUCH UND DIE BAUPRAXIS
BEARBEITET
von

ADOLF OPDERBECKE

PLOFESSOR AN DER BAUGEWERKSCHULE ZU CASSEL

UND

HANS ISSEL

ARCHITEKT UND KGL. BAUGEWERESCHULLEHRER ZU CASSEL

MIT 675 TEXTABBILDUNGEN UND 10 TAFELN

LEIPZIG 1899
VERLAG VON BERNH. FRIEDR. VOIGT.

Vorwort.

Die „Bauformenlehre" bildet im allgemeinen in dem Unterrichtsplane an Baugewerkschulen ein vielumstrittenes Lehrfach. Die Verfasser sind deshalb bei der Bearbeitung des vorliegenden Handbuches ihren eigenen Weg gegangen, so, wie sie ihn beim Unterrichten seit vielen Jahren mit Erfolg beschritten haben. Eine feste Grenze zu ziehen für die Betrachtung dieses Lehrstoffes ist aber sehr schwer, denn eine solche wird immer von der Begabung des einzelnen Schülers abhängen. Immerhin waren die Verfasser bemüht, der Durchschnittsbegabung Rechnung zu tragen und vor allen Dingen die Form durch die Vorführung der zugehörigen Konstruktion zu erläutern.

Die Säulenordnungen sind hier nicht aufgeführt, da sie für die bürgerliche Baukunst, die wir allein hier im Auge haben, ohne Bedeutung sind; ebenso ist das ornamentale Beiwerk, als den Rahmen dieses Lehrbuches überschreitend, ausser Betrachtung geblieben.

Der Text wurde so knapp und so sorgsam als möglich zusammengestellt, so dass wir, mit Hülfe der von der Verlagsbuchhandlung in anerkennenswerter Weise hergestellten Textabbildungen, dem studierenden Bautechniker ein Buch in die Hand geben, das bei aufmerksamer Betrachtung in der Schule sowohl als auch beim häuslichen Studium seinen fördernden Zweck nicht verfehlen dürfte.

Cassel, Januar 1899.

Die Verfasser.

Inhaltsverzeichnis.

Seite
Vorwort .v
I. Abschnitt.
Der Backsteinbau.
Entwickelung des Backsteinbaues 1

1. Normale Formsteine 7
2. Aussernormale Formsteine 9
Sockelgesimse 9
Fenstersohlbänke 10
Gurtgesimse 11
Haupt- oder Traufgesimse 15
Fenster, Hauseingänge und Giebelbildungen 19
II. Abschnitt.
Der Werksteinbau für mittelalterliche Formen.
Entwickelung des mittelalterlichen Werksteinbaues 59
Die Gesimse 61
Die Sockelgesimse 63
Die Gurtgesimse 63
Die Hauptgesimse 66
Die Fenster 73
Die Hauseingänge (Portale) 88
Giebelbildungen 97
III. Abschnitt.
Der Werksteinbau in Renaissanceformen.
3. Allgemeines 107
a) Das Werkstein-Material 107
b) Die Bearbeitung der Werksteine 108
c) Die Fehler der Werksteine 108
d) Die Stärken der Werksteine 109
e) Das Versetzen der Werksteine 110
4. Die Kunstform des Werksteines 111
5. Das profilierte Quadermauerwerk (Rustica) 119
a) Geschichtliches 119
b) Die Herstellung der Quadern 121
c) Die Sicherung des Quaderverbandes 121
d) Die Formenbehandlung der Quader 123
e) Der Quader in der Fassade 124
6. Oie Gesimse 127
a) Die Profilierung der Gesimse (Gesimselemente) 127
b) Fussgesimse und Gebäudesockel 132
c) Gurtgesimse und Zwischengebalke 135
d) Hauptgesimse 138
7. Fenstergestaltung 146
a) Die Form der Fensteröffnung 146
b) Das Fenster im Quadermauerwerk 150
c) Das Fenstergestell aus Werksteinen 154
d) Zusammengezogene Fenster 167
e) Untergeordnete Zimmerfenster 169
f) Verhältnisregeln 169
8. Die Loggia (Hauslaube) 171
9. Die Hausthür- und Hausthor-Umrahmung 171
a) Thüren ohne besonderen Rahmen 172
b) Thüren mit architektonischer Umrahmung 174
10. Giebel und architektonische Aufbauten 179
11. Vorbauten 188

I. Abschnitt.

Der Backsteinbau.

Verfasser: Prof. Adolf Opderbecke.

Die Verwendung des Backsteines erstreckte sich ursprünglich auf eine massenhafte Anhäufung, während seine Verwendung zu Kunstbauten nur sehr langsam Eingang und Fortentwickelung fand. Seine Form ist zunächst immer die eines rechtwinkeligen vierseitigen Prismas.

Der ersten grösseren Anwendung begegnen wir bei den Aegyptern; die Hellenen benutzten ihn nur in geringem Masse und erst bei den Römern gelangte er wieder zu höherer Geltung. Hier sehen wir zum erstenmal Steine zur Anwendung gebracht, welche von der seither rechteckigen Form abweichen und welche bei quadratischer oder sechsseitiger Form meist über Eck stehend angeordnet wurden. Auch Formsteine von mehr oder weniger reicher Profilierung kannten die Römer bereits und auf welcher Höhe damals die Ziegeltechnik schon stand, bezeugen uns die bedeutenden Dimensionen der Steine - bis 42 cm Länge bei nur geringer Höhe - an vielen Bauten aus der Römerzeit und der Umstand, dass diese keine Spur von Krümmung aufweisen. Unter den Byzanthinern erfuhr dann der Ziegelbau eine besonders sorgsame Pflege und wir beobachten jetzt schon selbständige Formen, welche wenig an die der Antike erinnern. Von hier aus wird der Backsteinbau weiter übertragen auf andere Völker, namentlich nach Ober-Italien und im Mittelalter sehen wir ihn endlich in unserer nordischen Tiefebene, besonders zwischen Brandenburg und Hannover, von hier nordwärts über Lüneburg bis Bremen, entlang der Nord- und Ostsee, vor allem in Lübeck, in ganz Mecklenburg, in Stralsund und Stettin bis nach Königsberg und von dort über Berlin bis Magdeburg heimisch werden. Es darf uns diese Uebertragung aus den südlichen Ländern mit Uebergehung Süddeutschlands direkt nach unserem Norden um deswillen nicht wunder nehmen, weil diese, im Gegensatz zu Süddeutschland, an natürlichen Bausteinen arme Gegend die für die Ziegelbereitung erforderlichen Rohstoffe, Lehm oder fetten Flussschlamm, in grossen Mengen zur Verfügung hat.

In der letzten Hälfte unseres Jahrhunderts hat der Bau mit gebrannten Steinen einen bedeutenden Aufschwung genommen und es wurden die Ziegeleitechniker gezwungen, Mittel und Wege zur vereinfachten und schnelleren Her-

[^0]stellung der Steine zu ersinnen, um den durch die massenweise Verwendung des Ziegelsteines hervorgerufenen höheren Anforderungen genügen zu können.

Auch mussten dieselben bemült sein, den Steinen ein besseres Aussehen, gleichmässige Färbung und vor allem eine gleiche und scharfbegrenzte Form zu geben.

Den ersten Anstoss zu dieser Wiederbelebung des Backsteinbaues gab Schinkel durch die ausschliessliche Verwendung gebrannter Steine beim Bau der Bau-Akademie, des Werder'schen und des Feilner'schen Hauses in Berlin.

Seitdem ist in Berlin eine grosse Zahl Kirchen und anderer öffentlicher Gebäude, sowie eine kaum zu übersehende Zahl von Privatbauten, besonders industrielle Etablissements, als Ziegelrohbau zur Ausführung gelangt.

In Hannover war es in erster Linie der Altmeister Hase, in Cassel der geniale, leider zu früh verstorbene Ungewitter, welche die Wiederaufnahme des Backsteinbaues kräftig zu fördern suchten. Aber auch andere, wie Adler durch die Veröffentlichung der vorzüglichen Aufnahmen unserer mittelalterlichen Bauwerke, trugen kräftig zur weiteren Förderung und Neubelebung des Rohbaues bei.

Manche Anfeindungen hat der Backsteinbau über sich ergehen lassen müssen; heute ist die Ueberzeugung von seiner Gleichberechtigung mit anderen Bauweisen wohl überall durchgedrungen.

Bei Einführung von Maschinen iu die Ziegeleibetriebe glaubte man die Fabrikation zu fördern, die Güte der Steine zu heben, indem man den Thon so konsistent wie nur immer möglich durch die Ziegelpresse gehen liess. Die Steine erhielten wohl ein schöneres Aussehen als die bis dahin üblichen Handsteine, besassen aber nur zu häufig nicht die gleichmässige Spannung und das dichte Gefüge, den die nassere Verarbeitung mit der Hand ihnen früher gegeben hatte. Den Mangel dieser Herstellungsweise können wir an einer grossen Zahl von Bauwerken beobachten, welche mit solchen Steinen verblendet sind. Erst mit Einführung des Hohl- oder Lochsteines sind die Blendziegel wieder zu einer vollkommeneren Bearbeitung gelangt. Die Fabrikation derselben erfordert ganz besonders gute und gut verarbeitete Rohstoffe, ausserdem aber eine Vermehrung des Wasserzusatzes. Durch das verengte Mundstück der Ziegelpresse wird eine grössere und gleichmässigere Dichtigkeit der Steine und infolgedessen auch ein besseres und gleichmässigeres Durchbrennen der Steine erzielt. Wesentlich gefördert wurde in den letzten Jahrhunderten die Verwendung des Backsteines durch die Einführung der schön und gleichmässig geformten und fest gebrannten Blendsteine aus den lausitzer und schlesischen - besonders den Siegersdorfer Ziegelwerken, welche solche in den verschiedensten Färbungen auf den Markt brachten und namentlich auch wieder den Glasuren zu Ansehen verhalfen. Letztere, im Mittelalter vorzugsweise als konstruktives Schutzmittel für der Witterung in besonders hohem Masse ausgesetzte Bauteile verwendet, hat heute insofern eine viel grössere Bedeutung erlangt, als ihre Verwendung in erster Linie auf das Erkennen ihrer dekorativen Wirkung zurückzuführen ist. Die Glasur nimmt in der Backsteinarchitektur gewissermassen die Stelle ein, welche dem Golde in der malerischen Dekoration zugeteilt ist; sie belebt das Bild, sie trennt die Farbe und erhält diese frisch.

Viel Streit ist unter den Fachgenossen entbrannt über die Verwendung der Terrakotten beim Ziegelrohbau etc. Während die einen alle ornamentalen Teile, ja selbst die Gesimsstücke, die diese stützenden Konsolen, die bekrönenden und frei endigenden Bauteile u. s. w. aus möglichst grossen Werkstücken gebrannt verlangten, bekämpften andere dieses Streben aufs heftigste und wollten nur dem gewöhnlichen Steinformate die Berechtigung zur Verwendung beim reinen Backsteinbau zugestehen. Im allgemeinen dürfte als richtig gelten, jedes Bauglied aus Terrakotten so zu gestalten, dass die Platten oder Steine - gleichviel in welcher Grösse - natürliche Abschnitte des Ornamentes bilden, in welchem die Fugen als notwendige Trennungslinien wirken.

Schon in früher Zeit scheint diese Auffassung befolgt worden zu sein, da wir sowohl an unseren nordischen Bauwerken des Mittelalters als an solchen aus der Renaissancezeit Oberitaliens nur verhältnismässig wenige sogenannte frei fortlaufende Ornamente beobachten, in welchen allerdings die Fugen immer stören.

Wenn nun in der Antike und Renaissance dem einzelnen Profile und seiner richtigen, sinngemässen Anwendung eine nicht unbedeutende Rolle für die Wirkung der Bauformen zugemessen werden muss, ist dies beim Backsteinbau viel weniger der Fall und die Hauptsache ist und bleibt hier für den Entwerfenden die Bewältigung, Gruppierung und Gliederung der architektonischen Massen, und wer hierin Gutes leistet, braucht sich nicht zu arge Skrupel zu machen, wenn er einmal ein stilistisch nicht völlig passendes Profil verwendet.

Vor der Verwendung lasse man die Steine, sofern die Beschaffenheit derselben durch langjährigen guten Ruf der Fabrik, welche diese lieferte, nicht zur Genüge bekannt ist, darauf untersuchen, ob sie Natron, Kali, Magnesia, organische Stoffe oder Schwefel enthalten. Diese Stoffe bilden in erster Linie den Boden, auf dem die spätere Zerstörung Nahrung findet. Die noch notwendigen Stoffe, um mit diesen an und für sich ja unschuldigen Stoffen schädliche hygroskopische Salze zu bilden, werden von aussen her, durch den Erdboden, die Luft, das Wasser oder die Umgebung der Steine hinzugeführt. - Wenn in dieser Weise konsequent seitens der Bauleitungen vorgegangen wird, so wird die ZiegelIndustrie auf Mittel sinnen müssen, um ihre Erzeugnisse auch nach dieser Seite zu verbessern, um einen Ziegelstein zu liefern, in dem schädliche Salze überhaupt nicht mehr vorkommen.

Wie viel in dieser Beziehung noch gesündigt wird, können wir leicht beobachten, wenn wir mit Aufmerksamkeit unsere zahlreichen Ziegelrohbauten, namentlich im Frühjahre betrachten. Wer die traurigen, vielfach ja wahrnehmbaren Wirkungen sich vergegenwärtigt, den muss es schmerzen, dass oft so viele Mittel für ein bestechendes Aeussere verschwendet wurden, während der Kern doch krank ist.

So mannigfaltig die Formen des Backsteinbaues auch sein können, so ist der Techniker doch immer an den vorliegenden Baustoff und an die Masse des Steines gebunden und er hat damit zu rechnen, die ihm hierdurch gewordenen Beschränkungen zu überwinden, sowie die Regeln des Steinverbandes genau zu beachten, deren Nichtbeachtung höchst bedenkliche Folgen nach sich ziehen können.

Gegenüber den Hintermauerungssteinen, für welche durch Vereinbarung zwischen Architekten und Ziegeleitechnikern die Normalgrösse von 250 mm Länge, 120 mm Breite und 65 mm Höhe festgesetzt worden ist, sollen die ${ }_{4}^{4} / 4$ Verblendsteine die Masse von $252 \times 122 \times 69 \mathrm{~mm}$ aufweisen. Abweichungen bis zu 1 mm mehr oder weniger sind zulässig.

Die Verblendung mit ${ }^{4} / 4$ Steinen wäre nun die natürlichste und bequemste, da man dann auf der Baustelle, abgesehen von Profilsteinen, nur einer Sorte Steine bedürfte. Da jedoch der Versand solcher Steine auf grössere Entfernungen bedeutende Kosten verursacht, auch zu denselben verhältnismässig viel Material erforderlich ist, so gingen die grösseren Ziegeleien schon bald dazu über, zur Flächenverblendung ${ }^{1 / 4}$ und $1 / 2$ Lochsteine, also möglichst leichte Steine für die Verschickung in entferntere Gegenden herzustellen.

Die gebräuchlichsten Verblendsteine sind:
Fig. 1.

Der für die Verblendung mit ${ }^{4} / 4$ Steinen gebräuchlichste und beste Verband ist der Kreuzverband, während bei Verwendung von Riemchen und Köpfen nur der Kopfverband in Frage kommt. Bei der Verblendung mit Riemchen und Köpfen kann man diese in den eigentlichen Mauerkörper einbinden lassen, oder man verstärkt letzteren um die Riemchenstärke, legt also die Verblendung vor die Mauerfäche. Der ersteren Methode wird man bei stärkeren Mauern, der
zweiten bei verhältnismässig schwachen Mauern den Vorzug geben müssen. In Fig. 2 sind einige Beispiele für die Verblendung 1 Stein starker und $1 \frac{1}{2}$ Stein starker Mauern gegeben.

Fig. 2.

2 aufeinander folgende Schichten einer 1 Stein starken, von beiden Seiten verblendeten Wand.

2 aufeinander folgende Schichten einer einseitig verblendeten $11 / 2$ Stein starken Wand mit eingebundenen Riemchen.

2 aufeinander folgende Schichten einer einseitig verblendeten $11 / 2$ Stein starken Wand mit vorgesetzten Riemchen.

Als Fugenstärke rechnet man beim Verblendbau meist 8 mm , also einen Kopf + Fuge $=130 \mathrm{~mm}$ und eine Schicht + Fuge $=77 \mathrm{~mm}$, oder der Einfachheit halber auf jedes Meter Höhe 13 Schichten. Damit die Stossfugen gleicher Schichten genau lotrecht übereinander zu liegen kommen, ist erforderlich, alle Längenmasse genau nach Kopflängen festzustellen. Man kann sich hierfür der drei Formeln $\mathrm{x} \cdot 13-1$, $\mathrm{x} \cdot 13$ und $\mathrm{x} \cdot 13+1$ bedienen, je nachdem man das Längenmass zwischen zwei ausspringenden Ecken, oder zwischen einer ausspringenden und einer einspringenden Ecke, oder endlich zwischen zwei einspringenden Ecken ermitteln will. Aus Fig. 3 ist die Anwendung dieser Formeln auf die verschiedenen vorkommenden Fälle leicht zu ersehen. In denselben bedeutet x die jeweilige Kopfzahl, die Zahl 13 das Kopfmass + Fuge in Zentimetern ausgedrückt.

Wenn nun mit den Steinen einfach rechteckigen Formates sich selbst reichere Fassaden ausbilden lassen, so stellen sich doch immer, namentlich bei den Ge-

Fig. 3.

simsen und insbesondere wo diese bei freistehenden Gebäuden um die Ecken herumgeführt werden sollen, Schwierigkeiten heraus und die Lösungen, zu denen man hier gezwungen wird, tragen meist den Stempel des Gesuchten, Gequälten. Von dem Architektenverein zu Berlin und dem Deutschen Vereine für Fabrikation von Ziegeln, Thonwaren, Kalk und Zement sind aus diesem Grunde eine Anzahl sogenannter Normalformsteine festgelegt worden, welche von jeder grösseren Ziegelei auf Lager gehalten oder doch wenigstens angefertigt werden. Neben diesen Normalformsteinen wird natürlich von den leistungsfähigen Ziegeleiwerken jede beliebige andere Form nach Wunsch und Zeichnungen des Bestellers angefertigt, ja es werden von einigen Werken selbst eine grössere Zahl solcher aussernormaler Formsteine auf Lager gehalten.

Die wichtigste Stelle unter den Formsteinen gebührt den Schrägsteinen und den Wassernasensteinen für wagerechte, abdeckende Gliederungen. Zu stützenden Gliedern unter ausladenden Gesimsen sind die Kehlen und die Stäbe (Viertelstäbe, Wulste) zu verwenden. Die gebräuchlichsten Formsteine für senkrechte und bogenförmige Gliederungen (Fenster- und Thüreinfassungen, Pfeiler- und Gebäudeecken) sind die Fasensteine, die Hohlkehlsteine und die Rundstabsteine.

In den Figuren 4, 5, 6 und 7 sind sowohl die Normalformsteine wie auch eine Anzahl aussernormaler Formsteine dargestellt. Die Nummerbezeichnung der Normalformsteine ist die der Siegersdorfer Werke in Schlesien.

Die Verblendsteine (vergl. Fig. 1) erhalten, wenn sie als Riemchen, Kopfsteine, Rollschichtsteine oder ganze Steine Verwendung finden sollen, wagerecht und parallel zu der Sichtfäche verlaufende Hohlräume und zwar im ersteren Falle einen, im zweiten Falle zwei, im dritten Falle sechs und im vierten Falle, je nachdem die Steine als Läufer oder als Binder dienen sollen, zwei beziehungsweise fünf Hohlräume.

Bei den Ecksteinen sind diese Hohlräume zwar auch parallel der Sichtfäche, aber in senkrechter Richtung angeordnet; sie haben also hier die Steindicke zur Höhe und ihre Zahl beträgt bei dem ¹/4 Eckstein zwei, bei dem ½ Eckstein vier, bei dem $3 / 4$ Eckstein zehn und bei dem ${ }^{4} / 4$ Eckstein zwölf.

Diese Hohlräume sind nötig, um ein gutes Durchbrennen der Steine zu ermöglichen und um einem Krümmen, Verziehen der Flächen zu begegnen. Dann wird hierdurch aber auch das Gewicht der Steine bedeutend vermindert und somit an Transportkosten nicht unwesentlich gespart.

1. Normale Formsteine.

a) Schrägsteine und Wassernasensteine.

Fig. 4.

b) Kehlen und Stäbe.

Fig. 5.

c) Rundstabsteine.

Fig. 6.

Fasensteine für senkrechte Gliederung sind durch die Figuren 1, 1a, 1b, 1f/g, 2 , 2 a und $2 \mathrm{f} / \mathrm{g}$ (Fig. 4), Kehlsteine für senkrechte Gliederung durch die Figuren 4, 4a, 4b, $4 \mathrm{f} / \mathrm{g}$ und Vieirtelstabsteine für senkrechte Gliederung durch die Figuren 5, 5a, 5b und $5 f / g$ (Fig. 5) zur Darstellung gebracht.

[^0]: Prof. A. Opderbecke und Hans Issel, Bauformenlehre.

